Math Problem Statement

The improper integral ∫(from 0 to ∞) (e^x / (1 + e^(2x))) dx and its convergence.

Solution

To determine whether the improper integral
0ex1+e2xdx\int_{0}^{\infty} \frac{e^x}{1 + e^{2x}} \, dx converges and evaluate its value, we proceed as follows:


Step 1: Simplify the integrand

Start with the integrand: f(x)=ex1+e2x.f(x) = \frac{e^x}{1 + e^{2x}}.

We can factor out exe^x in the denominator as follows: 1+e2x=e2x(e2x+1).1 + e^{2x} = e^{2x} \left( e^{-2x} + 1 \right). Thus: ex1+e2x=exe2x(e2x+1)=exe2x11+e2x.\frac{e^x}{1 + e^{2x}} = \frac{e^x}{e^{2x} (e^{-2x} + 1)} = \frac{e^x}{e^{2x}} \cdot \frac{1}{1 + e^{-2x}}.

Simplify the powers of ee: exe2x=ex.\frac{e^x}{e^{2x}} = e^{-x}. Therefore: f(x)=ex1+e2x.f(x) = \frac{e^{-x}}{1 + e^{-2x}}.


Step 2: Substitution to simplify the integral

To make progress, use the substitution: u=ex,sodu=exdxdx=duu.u = e^{-x}, \quad \text{so} \quad du = -e^{-x} dx \quad \Rightarrow \quad dx = -\frac{du}{u}.

Now update the limits of integration:

  • When x=0x = 0, u=e0=1u = e^{-0} = 1,
  • When xx \to \infty, u0u \to 0.

Substituting into the integral: 0ex1+e2xdx=10u1+u2(duu).\int_{0}^{\infty} \frac{e^x}{1 + e^{2x}} \, dx = \int_{1}^{0} \frac{u}{1 + u^2} \cdot \left( -\frac{du}{u} \right).

Simplify: 0ex1+e2xdx=0111+u2du.\int_{0}^{\infty} \frac{e^x}{1 + e^{2x}} \, dx = \int_{0}^{1} \frac{1}{1 + u^2} \, du.


Step 3: Evaluate the integral

The integral of 11+u2\frac{1}{1 + u^2} is the standard result: 11+u2du=arctan(u).\int \frac{1}{1 + u^2} \, du = \arctan(u).

Thus: 0111+u2du=arctan(1)arctan(0).\int_{0}^{1} \frac{1}{1 + u^2} \, du = \arctan(1) - \arctan(0).

Using the known values of the arctangent function: arctan(1)=π4,arctan(0)=0.\arctan(1) = \frac{\pi}{4}, \quad \arctan(0) = 0.

Therefore: 0ex1+e2xdx=π4.\int_{0}^{\infty} \frac{e^x}{1 + e^{2x}} \, dx = \frac{\pi}{4}.


Final Answer:

The integral converges and evaluates to: π4\boxed{\frac{\pi}{4}}

Thus, the correct choice is (a).


Do you want further clarification on any step? Let me know!

Related Questions:

  1. What makes an improper integral converge or diverge?
  2. How do you use substitution to evaluate improper integrals?
  3. What is the standard integral for 11+x2\frac{1}{1 + x^2} and how is it derived?
  4. Why is exe^{-x} a useful substitution in this problem?
  5. How can improper integrals be applied in real-world problems?

Tip:

For improper integrals, always verify whether the integral converges before evaluating it. Substitution and standard integral forms often simplify the process!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Improper Integrals
Substitution Method
Arctangent Function
Exponential Functions

Formulas

∫(1 / (1 + x^2)) dx = arctan(x) + C

Theorems

Convergence of Improper Integrals

Suitable Grade Level

University Calculus Level